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Abstract
Despite the advancements in large language mod-
els (LLMs) for mathematical reasoning, solv-
ing competition-level math problems remains a
significant challenge, especially for open-source
LLMs without external tools. We introduce the
MMIQC dataset, comprising a mixture of pro-
cessed web data and synthetic question-response
pairs, aimed at enhancing the mathematical rea-
soning capabilities of base language models.
Models fine-tuned on MMIQC consistently sur-
pass their counterparts in performance on the
MATH benchmark across various model sizes.
Notably, Qwen-72B-MMIQC achieves a 45.0%
accuracy, exceeding the previous open-source
state-of-the-art by 8.2% and outperforming the
initial version GPT-4 released in 2023. Exten-
sive evaluation results on Hungarian high school
finals suggest that such improvement can gen-
eralize to unseen data. Our ablation study on
MMIQC reveals that a large part of the improve-
ment can be attributed to our novel augmenta-
tion method, Iterative Question Composing (IQC),
which involves iteratively composing new ques-
tions from seed problems using an LLM and ap-
plying rejection sampling through another LLM.
The MMIQC dataset is available on the Hugging-
Face hub at https://huggingface.co/
datasets/Vivacem/MMIQC.†

1. Introduction
Although large language models have been demonstrated
to be powerful in various applications (Chen et al., 2021;
Brown et al., 2020; Ouyang et al., 2022; Park et al., 2023;
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†The code is available at https://github.com/
iiis-ai/IterativeQuestionComposing.
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Figure 1. Performance evaluation of various LLMs on
MATH (Hendrycks et al., 2021a) and the 2023 Hungarian
National High School Mathematics Finals (Paster, 2023b).

Huang et al., 2022b), solving math problems that require
complex reasoning skills remains a challenging task. On
MATH (Hendrycks et al., 2021b), a competition-level math
problem benchmark, open-source base LLMs such as the
LLaMA family (Touvron et al., 2023a;b) fail to answer most
of the problems correctly.

Previous work tries to enhance the mathematical reasoning
abilities of base models by fine-tuning them on domain-
specific data. Specifically, One line of work (Azerbayev
et al., 2023; Lewkowycz et al., 2022) collects math corpora
from the web and fine-tunes the models on them, which is
also known as the procedure of continual pre-training (Cossu
et al., 2022). Another line of work focuses on construct-
ing synthetic data through rejection sampling (Yuan et al.,
2023), distilling from GPT-4/GPT-3.5 (Yue et al., 2023) or
question bootstrapping (Yu et al., 2023), and then use the
generated question-response pairs to perform supervised
fine-tuning in the way described in Taori et al. (2023);
Ouyang et al. (2022). However, there still exists a large
performance gap between these fine-tuned models and the
most advanced close-source models such as GPT-4 (Ope-
nAI, 2023) and Gemini-Ultra (Team et al., 2023). Given
that simply adding more data does not always lead to better
performance as shown in (Yu et al., 2023), how to bridge
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Figure 2. The performance of base models and their fine-tuned versions on MATH benchmark. The models remarked with an ∗ are trained
and evaluated by us. We can see that the models fine-tuned on MMIQC consistently outperform their counterparts by a clear margin.

the gap remains an open challenge.

This work tackles the challenge by combining the two lines
of work. On one hand, we reuse the high-quality corpora
used in the pre-training stage during fine-tuning. Specifi-
cally, MMIQC contains around 1200k question-response
pairs we filtered and pre-processed from the web pages at
math.stackexchange.com, which are included in the RedPa-
jama dataset (Computer, 2023). On the other hand, for the
synthetic data part of MMIQC, we increase the diversity by
using multiple kinds of augmentation methods listed below:

1. Prompting GPT-4 with an integrated version of the
question bootstrapping prompts used in (Yu et al.,
2023), and do rejection sampling with GPT-3.5-Turbo
on both seed and augmented problems.

2. Using a modified prompt presented in (Liu et al., 2023)
to ask GPT-4 to generate similar problems with an-
swers given seed problems of the training set of MATH.
Although the generated answers can be wrong, we per-
form rejection sampling on these problems as well.

3. Performing IQC (Iterative Question Composing) with
4 iterations in total. We iteratively ask GPT-4 to com-
pose new questions from the given seed problems and
do rejection sampling to filter those problems with
answers aligned with GPT-3.5-turbo’s answers.

4. Filtering a 204k subset of MetaMathQA (Yu et al.,
2023) and adding it to the MMIQC dataset (More de-
tails on MMIQC will be introduced in Section 4).

We fine-tune several base models on MMIQC, resulting
in models consistently achieving a large margin compared
to their counterparts when evaluated on MATH, as shown
in Figure 2. Specifically, the models Mistral-7B-MMIQC,
Llemma-34B-MMIQC, DeepSeek-67B-MMIQC and Qwen-

72B-MMIQC, which are obtained by fine-tuning Mistral-
7B (Jiang et al., 2023), Llemma-34B (Azerbayev et al.,
2023) and DeepSeek-67B (Bi et al., 2024) on MMIQC,
achieve 36.0%, 38.6%, 41.0% and 45.0% accuracy on
MATH, 5.8%, 3.8%, 4.2% and 3.3% higher than the coun-
terpart models that are fine-tuned on MetaMathQA, respec-
tively.

We also evaluate the models on the 2023 Hungarian national
high school finals in mathematics (Paster, 2023a). The
results in Figure 1 suggest that the mathematical reasoning
abilities the models acquire through being fine-tuned on
MMIQC can generalize to unseen held-out problems.

We highlight our contributions as follows:

• We propose IQC (Iterative Question Composing), a
data augmentation method that can iteratively generate
diverse data starting from a seed dataset of math word
problems.

• We release MMIQC, a mixture of processed web data
and synthetic question-response pairs. In different
model sizes, the models fine-tuned on MMIQC consis-
tently outperform their counterparts by a clear margin
on the MATH test set. Notably, Qwen-72B-MMIQC
achieves a 45.0% accuracy, exceeding the previous
open-source state-of-the-art‡ by 8.2% and outperform-
ing the initial version GPT-4 released in 2023. Such
improvement can generalize to unseen held-out data,
e.g., Hungarian high school finals.

• Our results show that reusing the high-quality data in
the pre-training corpora during the fine-tuning stage

‡As of the time of writing in January 2024, to the best of our
knowledge, the open-source SOTA on MATH is the DeepSeek-
67B-MetaMathQA model reported in Wang et al. (2023a), which
achieves 36.8% accuracy without external tool usage.
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can improve the model performance, successfully com-
bining the two lines of work of continual pre-training
and supervised fine-tuning.

• Our results also show that using multiple augmenta-
tion methods to construct datasets for fine-tuning is an
efficient way to boost the performance of LLMs.

2. Related Work
Base Large Language Models. Base large language mod-
els (LLMs) trained on massive corpora (e.g. 1.4T tokens
of text for Llama‘(Touvron et al., 2023a)) from various
sources with a simple auto-regressive next token prediction
loss have achieved great success in various natural language
processing tasks (Radford et al., 2019; Brown et al., 2020;
Touvron et al., 2023a;b; Jiang et al., 2023). Although these
pre-trained models are not intended to serve for solving
complex mathematical problems, Wei et al. (2023) show
that few-shot prompting can help the models answer a cer-
tain fraction of problems correctly. Nevertheless, to achieve
better performance, fine-tuning the base LLMs on domain-
specific data is required.

Fine-tuning Base LLMs on Mathematical Datasets. Cur-
rent practice of fine-tuning base LLMs on mathematical
datasets can be classified into two kinds: 1) continual pre-
training (Lewkowycz et al., 2022; Azerbayev et al., 2023).
This line of work typically collects billion-tokens level math-
ematical text data from the web, such as mathematical sub-
sites of Stack Exchange and ArXiv, and fine-tune the model
in the same way as that in the pre-training stage.

2) SFT (Supervised Fine-Tuning) (Yuan et al., 2023; Yu
et al., 2023; Yue et al., 2023; Gou et al., 2023). Works in
this line collect question-response pairs via various methods
and train the models on their dataset in an Alpaca style. Due
to the scarcity of publicly available high-quality question-
response pairs datasets and the costly nature of manually
composing math word problems, how to augment new data
from the existing datasets becomes the focus of these works.

Our work is located in the middle between these two:
MMIQC is a mixture of filtered pre-training corpus and
question-response pairs generated using various augmenta-
tion methods.

Reasoning Frameworks for Solving Mathematical Prob-
lems. Much effort has been devoted to achieving a higher
accuracy on math word problem benchmarks by design-
ing different procedures of using the given LLMs to obtain
the answers, which we refer to as reasoning frameworks.
Among them, Prompting-based methods (Radford et al.,
2019; Wei et al., 2023; Fu et al., 2022) play a significant
role in activating the potential reasoning abilities for base
LLMs through carefully designing the prompts shown to
the models. Self-consistency (Wang et al., 2023b) samples

multiple rationale paths for a model and then decides the
answer by majority voting. In contrast of self-consistency,
Cobbe et al. (2021); Uesato et al. (2022); Lightman et al.
(2023) use Outcome Reward Models (ORM) and Process
Reward Models (PRM) trained on human annotations as
verifiers to help select the answer with the highest score
from the sampled reasoning paths of LLMs. Getting rid of
the need of manual annotation, Wang et al. (2023a) score a
given reasoning step by estimating the potential of that step
to lead to a correct answer automatically.

Some frameworks also include the use of plug-in tools and
external APIs. Program-aided prompting (Gao et al., 2022;
Yue et al., 2023) provides in-context samples containing
Python codes for LLMs and uses code interpreters to execute
the output to facilitate reasoning. Further, Gou et al. (2023)
interleave natural language rationales with Sympy code and
fine-tune the model on trajectories sampled from GPT-4
to follow their framework in two steps, namely imitation
learning and output space shaping.

We note that our results in Figure 2 do not include multiple
times of sampling, use of verifiers or code interpreters, thus
cannot be directly compared with the results reported in
these works.

3. Iterative Question Composing
Traditional data augmentation methods primarily concen-
trate on modifying either the questions or answers while
retaining their original meanings, or generating similar prob-
lems, as discussed in (Yu et al., 2023) and (Liu et al., 2023).
These methods, however, are limited in their diversity as
they aim to create nearly identical problems. Our approach,
termed IQC (Iterative Question Composing), deviates
from this by iteratively constructing more complex prob-
lems. It augments the initial problems, adding additional
reasoning steps without altering their intrinsic logical struc-
ture. This ensures that the newly formed problems are
organically linked to the original problem and elaborately
tries to not include extraneous elements induced by a large
transition of the reasoning process.

Notations. In our description, we refer to the combination
of an LLM, its tokenizer, encoding/decoding methods, and a
fixed generation configuration (inclusive of generation strat-
egy, sampling temperature, and stopping criteria) simply as
‘an LLM’. For an LLM π, we denote the output distribution
given prompt p ∈ A∗ as π(·|p). The concatenation of two
text paragraphs p1 and p2 is represented as p1 ⊕ p2.

The IQC process begins with specifying an LLM πq for
question composing and another model πr for rejection
sampling. An answer extractor is needed to derive answers
from responses. Two responses r1 and r2 are considered
equivalent, denoted r1 ≃ r2, if the same answer can be

3
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Algorithm 1 Iterative Question Composing
Require: Question composing model πq, rejection sam-

pling model πr, answer extractor defining ≃, text tem-
plater x(·, ·) with inverse x−1(·), initial seed dataset
S0 = {(qi, ai)}ni=1, total iterations K, question com-
posing prompts p1, p2, . . . , pK , rejection sampling
prompt pr, maximum rejection samples per problem m

1: for k = 1 to K do
2: Initialize Sk ← {}, Rk ← {}
3: for all (q, a) ∈ Sk−1 do
4: Sample x′ ∼ πq (·|pk ⊕ x(q, a))
5: Decompose (q′, a′)← x−1(x′)
6: Append Sk ← Sk ∪ {(q′, a′)}
7: for j = 1 to m do
8: Sample a(j) ∼ πr(·|pr ⊕ q′)
9: if a(j) ≃ a′ then

10: Append Rk ← Rk ∪ {q′, a(j)}
11: end if
12: end for
13: end for
14: Combine Dk ← Sk ∪Rk

15: end for
output Collections D1, D2, . . . , DK

extracted from both. The process initiates with a seed dataset
S0 = {(qi, ai)}ni=1.

In iteration #1, we prompt πq with p1 ⊕ x(q, a) for each
(q, a) ∈ S0, where x(·, ·) is a text template transforming
a question-response pair into text, and p1 solicits a new
question-answer composition. This yields a new dataset

S1 = {(q′i, a′i)}ni=1,

where (q′i, a
′
i) = x−1(x′

i) and x′
i ∼ πq (·|p1 ⊕ xi) is the

output for the ith sample. We further enhance S1 by rejec-
tion sampling from πr, resulting in

R1 := {(q′i, a
(j)
i )|a(j)i ≃ a′i, i ∈ [n], j ∈ [m]},

where a
(j)
i are the sampled responses from πr(·|pr ⊕ q′i).

The dataset D1 is then formed by uniting S1 and R1:

D1 := S1 ∪R1.

For each subsequent iteration #k, the aforementioned proce-
dure is repeated using Sk−1 as the seed dataset, with varying
question composing prompts pk. The complete IQC process
is delineated in Algorithm 1.

4. The MMIQC Dataset
In this section, we introduce how each part of MMIQC is
constructed in detail.

Seed Question:
Evaluate

(5a2 − 13a+ 4)(2a− 3)

for a = 1 1
2 .

Iter # 1 Question:
If b = 2a − 3 and a = 1 1

2 , what is the value of
(5a2 − 13a+ 4)b?

Iter # 2 Question:
Given b = 2a− 3, a = 1 1

2 , and c = 3b+5, find the
value of c(5a2 − 13a+ 4).

Iter # 3 Question:
Given b = 2a − 3, a = 1 1

2 , c = 3b + 5, and
d = c2− 4c, find the value of d+ c(5a2− 13a+4).

Iter # 4 Question:
Given b = 2a − 3, a = 11

2 , c = 3b + 5, d =
c2 − 4c, and e = d3 + 2cd − 7, find the value of
e+ c(5a2 − 13a+ 4) + d.

Figure 3. An example of the questions composed via IQC by GPT-
4 given 1 seed problem in MATH training set.

Subset of MetaMathQA. The original MetaMathQA
dataset is constructed by sampling GPT-3.5 for k = 20
times under a T = 0.7 temperature for each problem in
the training set of MATH (Hendrycks et al., 2021a) and
GSM8K (Cobbe et al., 2021) dataset, or its bootstrapped
versions. We restrict the number of samples for each com-
pletely same question to be 3 and 1 for MATH and GSM8K,
respectively, to obtain a subset of MetaMathQA. This sub-
set contains 112.2K GSM8K question-response pairs and
91.5K MATH pairs.

Answer Augmentation and Question Bootstrapping. We
integrate the question bootstrapping methods used in Yu
et al. (2023) into a single prompt shown in Figure 5. Our
motivation is that given GPT-4 is highly capable of natural
language understanding, a few-shot prompting style used
in Yu et al. (2023) might suppress the diversity of the aug-
mented questions. The seed dataset is constructed by the
samples in the training set of MATH that do not contain
Asymptote language in their question statements. We per-
form rejection sampling from GPT-3.5 on both the seed
dataset and generated questions using the prompt shown in
Figure 6, obtaining 66.5K question-response pairs. We use
a temperature T = 1.0 for both question bootstrapping and
rejection sampling.

Augmented Similar Problems. Liu et al. (2023) asks GPT-
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You will be provided with 1 math problem and
its solution and answer (which are not guaranteed
to be right). Please generate 1 new problem that
(implicitly) contains the original problem as a
subproblem or substep.

Your response should only contain one line text
with 3 fields ”problem”, ”solution” and ”answer”
in the same format as the given problem. The
solution to the generated problem should be as brief
as possible and **should not quote the conclusion
of the original problem**. Ensure there is only
one latex box in the solution and the answer is
completely the same with the content in the box.

**Please use two backslashes to represent one in
the strings in order that it can be properly read in
python.** For example, you should write “\cdot” as
“\\cdot”.

Figure 4. The prompt we use to perform question composing in
IQC. The brown part is not used in iteration #1.

3.5 to generate 10 similar questions given 1 seed problem in
the training set of GSM8K. In our practice, we find that GPT
tends to generate several almost the same problems regard-
less of the given seed problem when asked to generate up
to 10 new problems. Thus, we only ask GPT to generate 3
problems (with a solution, for rejection sampling) each time,
using the prompt in Figure 7. Considering rejection sam-
pling needs the answer to the problem better to be correct,
we use the stronger GPT-4 instead of GPT-3.5. To control
the cost, our prompt emphasizes that the solution should
be as brief as possible. The total number of the augmented
similar problems and the question-response pairs rejection
sampled from them is 38.2K. The rejection sampling prompt
is the same one in Figure 6 as well. We use a temperature
T = 1.0 for both procedures.

Iterative Question Composing. We perform Iterative
Question Composing for 4 iterations as described in Sec-
tion 3. Specifically, we use GPT-4 for question composing
model πq with a T = 0.7 temperature and GPT-3.5 for re-
jection sampling model πr with a T = 1.0 temperature. The
question composing prompts and rejection sampling prompt
are shown in Figure 4 and Figure 6, respectively. The text
templater x(·, ·) we use is a program that transforms each
question-response pair into JSON text format, with fields
‘problem’ and ‘solution’. The resulting dataset has 55.1K
samples in total.§ We provide an example of the generated
questions in different iterations corresponding to the same

§A part of the samples are generated by performing IQC for 2
iterations using a legacy version of prompts.

Table 1. The composition of MMIQC.

DATA # SAMPLES #REPETITIONS RATIO

METAMATHQA 203.7K 3 26.6%
ANSAUG & QB 66.5K 3 8.7%
AUGSIMILAR 38.2K 3 5.0%
IQC 55.1K 3 7.2%
MATHSTEX 1203.6K 1 52.5%

seed problem in Figure 3. We note that although some of
the questions are not rigorously a sub-problem or sub-step
of the corresponding problem in the previous iteration as
required in our prompt, they are still valid questions that can
increase the diversity of the dataset.

Mathematics Stack Exchange. We observe that in the
OpenWebMath (Paster et al., 2023) dataset, the data from
Mathematics Stack Exchange shows high quality and is
most related to competition-level math. Motivated by this,
we extract the data collected from Mathematics Stack Ex-
change in RedPajama (Computer, 2023) and pre-process it
into question-response pairs. For each Mathematics Stack
Exchange page, we only retain the answer ranked first by
RedPajama. Then we filter out the answer that does not
contain a formula environment symbol ‘$’. This results in a
dataset with 1203.6K question-response pairs.

Table 1 shows the make-up of MMIQC. When fine-tuning
the models MMIQC contains 3 repetitions of the subsets
mentioned above, except for the Mathematics Stack Ex-
change part. We shuffle the order of samples after combin-
ing the subsets.

5. Experiments
5.1. Fine-tuning Setup

Our fine-tuning strategy mainly follows the practice of
(Taori et al., 2023), except that we use a different prompt
template to transform the question-response pairs. For a
sample from Mathematics Stack Exchange, the correspond-
ing prompt fed into the model during training is a simple
concatenation of the question and response with two new-
line symbols. For a sample from other subsets, we addition-
ally add a prefix ‘Please solve the following problem and
put your answer at the end with “The answer is: ”.’ to the
question-response concatenation.

We use the HuggingFace transformers library (Wolf et al.,
2019) for our fine-tuning experiments. We fine-tune all
models on MMIQC for 1 epoch, using a 3% warm-up ratio
linear learning rate schedule. For the choice of maximum
learning rate, we do a simple hyper-parameter selection
experiment shown in Table 2 and determine it to be 1e-
5. We use the BFloat16 numerical format during training.

5
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You will be provided with 1 math problem in newline-delimited json format. Please augment 5 diverse problems
from the given problem.

The way you augment a problem can be:
- Rephrase the problem.
- Change the scenario without modifying specific quantities.
- Set 1 number in the problem to an unknown variable, put the answer in the problem and ask what is the value of the
variable. Ensure the generated problem is reasonable. Otherwise, skip this method.
- Other approaches that can ensure the correctness of the answer you provide to the augmented problem.

Your response should only contain text in newline-delimited json format, keeping the same with the given problem.
Please use two backslashes to represent one in the strings.

Figure 5. The prompt we use to perform question bootstrapping for asking GPT-4.

You will be presented a mathematical problem. You
should solve the problem step-by-step carefully.
Present the final answer in latex boxed format, e.g.,
63π .

Figure 6. The prompt we use to do rejection sampling from GPTs.

You will be provided with 1 math problem in
newline-delimited json format. Please generate 3
diverse new problems similar to the given problem.

Your response should only contain text in newline-
delimited json format, keeping the same with the
given problem. The solutions to the generated prob-
lems should be as brief as possible. Ensure there
is only one box in the solution and the answer is
completely the same with the content in the box.
Please use two backslashes to represent one in the
strings.

Figure 7. The prompt we use to generate questions similar to the
seed problems for asking GPT-4.

Employing the DeepSpeed Zero-3 Stage (Rajbhandari et al.,
2020), we fine-tune 7B models on one node of 8xA800
GPUs with micro batch-size at 8, and gradient accumulation
at 4, 34B models on 2 nodes with micro batch-size at 4 and
gradient accumulation at 4 and ∼70B models on 4 nodes
with micro batch-size at 4 and gradient accumulation at 2,
maintaining an effective batch size of 256. It takes around
14 hours, 61 hours and 90 hours to fine-tune 7B, 34B and
∼70B models under the setups stated above, respectively.

Table 2. Ablation study on the optimal learning rate. We fine-tune
Mistral-7B on MMIQC with different maximal learning rate values
and evaluate the fine-tuned models on MATH to decide the best
candidate.

LR 1E-6 5E-6 1E-5 2E-5 5E-5 1E-4

MATH(%) 32.3 35.1 36.0 35.4 31.5 27.1

5.2. Model Evaluation

For a fair comparison, we first evaluate the fine-tuned mod-
els on MATH (Hendrycks et al., 2021a), a competition-level
math word problems benchmark with 5000 test problems in
a zero-shot setting. We prompt all our fine-tuned models
with the test question with the prefix ‘Please solve the fol-
lowing problem and put your answer at the end with “The
answer is: ”.’, and extract the answer from the output us-
ing a modified version of the answer extractor provided in
Lewkowycz et al. (2022). We use a series of rules to infer
whether the extracted answer is the same as the ground-truth
answer, including a comparison using SymPy (Meurer et al.,
2017). The complete results of our evaluation on MATH and
a comparison with existing models are shown in Table 3.

For the evaluation on 2023 Hungarian national high school
finals in mathematics, we use the few-shot prompt used in
(Paster, 2023a). We manually assess the grades for every
model according to the examiner instructions. For problem
16, 17 and 18, we drop the lowest scoring one.

5.3. Ablation Study on Subsets of MMIQC

In order to understand the ratio of contribution to the
improvement revealed in Table 3 of different subsets of
MMIQC, we fine-tune Mistral-7B with a series of training
sets constructed by gradually adding the subsets. When
MathStackExchange is not added, we fine-tune for 3 epochs.
When MathStackExchange is added to the training dataset,

6
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Table 3. A comparative analysis of the accuracies achieved by various models on the MATH benchmark. The models marked with an
asterisk(∗) are fine-tuned and evaluated by us. Other results, unless otherwise cited, are derived from Wang et al. (2023a). This comparison
highlights the significant improvements our fine-tuned models demonstrate over existing solutions in mathematical problem-solving
accuracy.

MODEL FT-DATASET TOOL USAGE? EVAL METHOD MATH(%)

PROPRIETARY MODELS

MINERVA-540B (UESATO ET AL., 2022) ARXIV+WEB NO MAJ1@64 50.3
GPT-4 (2023-0314) (BUBECK ET AL., 2023) - NO PASS@1 42.5
GEMINI-ULTRA (TEAM ET AL., 2023) - NO PASS@1 53.2

∼7B MODELS

LLAMA-2-7B (TOUVRON ET AL., 2023B) - NO PASS@1 2.5
QWEN-7B (BAI ET AL., 2023) - NO PASS@1 11.6
LLEMMA-7B (AZERBAYEV ET AL., 2023) PROOF-PILE-2 NO PASS@1 18.0
METAMATH-7B (YU ET AL., 2023) METAMATHQA NO PASS@1 19.8
MISTRAL-7B-METAMATHQA (YU ET AL., 2023) METAMATHQA NO PASS@1 28.2
MISTRAL-7B-MMIQC* MMIQC NO PASS@1 36.0
MAMMOTH-CODER-7B (YUE ET AL., 2023) MATHINSTRUCT CODE PASS@1 35.2
TORA-CODE-7B (GOU ET AL., 2023) TORA-CORPUS CODE PASS@1 44.6

∼34B MODELS

CODELLAMMA-34B - CODE PASS@1 25.0
LLEMMA-34B-METAMATHQA METAMATHQA NO PASS@1 34.8
LLEMMA-34B-MMIQC* MMIQC NO PASS@1 38.6
LLEMMA-34B-METAMATHQA METAMATHQA MATH-SHEPHERD MAJ+VERIFY1@256 47.3
TORA-CODE-34B (GOU ET AL., 2023) TORA-CORPUS CODE PASS@1 50.8

∼70B MODELS

LLAMA-2-70B (TOUVRON ET AL., 2023B) - NO PASS@1 13.5
DEEPSEEK-67B (BI ET AL., 2024) - NO PASS@1 18.7
DEEPSEEK-67B-METAMATHQA METAMATHQA NO PASS@1 36.8
DEEPSEEK-67B-MMIQC* MMIQC NO PASS@1 41.0
DEEPSEEK-67B-METAMATHQA METAMATHQA NO MAJ1@256 45.4
DEEPSEEK-67B-METAMATHQA METAMATHQA MATH-SHEPHERD MAJ+VERIFY1@256 48.1
QWEN-72B (BAI ET AL., 2023) - NO PASS@1 35.2
QWEN-72B-METAMATHQA* METAMATHQA NO PASS@1 41.7
QWEN-72B-MMIQC* MMIQC NO PASS@1 45.0

Table 4. How different subsets of MMIQC affect the accuracy of
the finetuned model on MATH. The base model is Mistral-7B,
and the accuracy baseline is the reported 28.2% of Mistral-7B-
MetaMathQA.

DATA # SAMPLES MATH(%)

METAMATHQA 395K 28.2

METAMATHQA (SUBSET) 203.7K 26.4 (-1.8)
+ ANSAUG & QB +66.5K 30.1 (+1.9)
+ AUGSIMILAR +38.2K 31.5 (+3.3)
+ IQC ITER #1 +21.8K 33.0 (+4.8)
+ IQC ITER #2 +16.0K 33.7 (+5.5)
+ IQC ITER #3 & #4 +17.3K 34.4 (+6.2)
+ MATHSTACKEXCHANGE +1203.6K 36.0 (+7.8)

we mix 3 repetitions of other data with 1 repetition of the
MathStackExchange, and fine-tune for only 1 epoch. It can
be seen from Table 4 that

• Although our filtered subset of MetaMathQA is only

half the size of the original dataset (which has 395K
samples, more than the total number of samples of our
synthetic data), the performance drop is only 1.8%.
This shows that the k = 20 strategy in (Yu et al., 2023)
results in some redundancy.

• Our Answer Augmentation & Question Boosting
data help the fine-tuned model beat Mistral-7B-
MetaMathQA, verifying our hypothesis that directly
asking GPT to perform question bootstrapping is more
efficient than providing few-shot examples to them.

• Our IQC method leads to a significant 3.1% improve-
ment from a high accuracy of 31.5% with only 55.1K
samples, showing its efficiency. Moreover, the later
iterations of IQC also account for a certain ratio of
improvement, proving that IQC is a method that can
continuously generate new data that can help increase
the diversity when added to the data generated in pre-
vious iterations.
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5.4. Contamination Test

We check the n-gram matches for MMIQC to ensure that the
improvement is not a result of direct memorization. We use
the script provided by (Azerbayev et al., 2023) to check the
n-gram matches between the synthetic part of the MMIQC
and MATH test set. It turns out that for a 30-gram match
check, there are 44 hits of match between the ‘solution’
field of MATH test set and the ‘output’ field of MMIQC, far
fewer than the 168 hits between that of MATH test set and
MATH training set. Moreover, we manually check these 44
hits and find that 43 among them belong to the case where
intermediate steps of the solutions to similar but different
questions collide, with the only exception being the question
‘A regular polygon has interior angles of 144 degrees. How
many sides does the polygon have?’. This almost rules out
the possibility that fine-tuned models get memorization of
solutions to the problems in the test set, indicating a very
low risk of data contamination for MMIQC.

6. Conclusion & Discussion
In this work, we introduce a novel data augmentation
method for math word problem datasets called IQC (It-
erative Question Composing) and use it in the construction
of our MMIQC dataset. Our evaluation results show that
the models fine-tuned on MMIQC achieve new SOTAs on
the MATH benchmark. The improvements of our models
benefit from the diverse data sources of MMIQC and the
effectiveness of IQC.

For future directions, we are interested in how to equip
open-source models with the ability to compose questions,
in order to perform IQC in a self-evolution style, similar to
that in (Huang et al., 2022a). Besides, how to integrate the
verification systems (Wang et al., 2023a; Liu et al., 2023)
that are originally used to improve the accuracy during
inference time into the procedure of IQC, is also an attractive
topic.
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